A programmable logic controller (PLC) or programmable controller is an industrial computer that has been ruggedized and adapted for the control of manufacturing processes, such as assembly lines, machines, robotic devices, or any activity that requires high reliability, ease of programming, and process fault diagnosis.
PLCs can range from small modular devices with tens of inputs and outputs (I/O), in a housing integral with the processor, to large rack-mounted modular devices with thousands of I/O, and which are often networked to other PLC and SCADA systems.[1] They can be designed for many arrangements of digital and analog I/O, extended temperature ranges, immunity to electrical noise, and resistance to vibration and impact.
PLCs were first developed in the automobile manufacturing industry to provide flexible, rugged and easily programmable controllers to replace hard-wired relay logic systems. Dick Morley, who invented the first PLC, the Modicon 084, for General Motors in 1968, is considered the father of PLC.
A PLC is an example of a hard real-time system since output results must be produced in response to input conditions within a limited time, otherwise unintended operation may result. Programs to control machine operation are typically stored in battery-backed-up or non-volatile memory.
[edit]
The PLC originated in the late 1960s in the automotive industry in the US and was designed to replace relay logic systems.[2] Before, control logic for manufacturing was mainly composed of relays, cam timers, drum sequencers, and dedicated closed-loop controllers.[3]
The hard-wired nature of these components made it difficult for design engineers to alter the automation process. Changes would require rewiring and careful updating of the documentation. Troubleshooting was a tedious process.[4] When general-purpose computers became available, they were soon applied to control logic in industrial processes. These early computers were unreliable[5] and required specialist programmers and strict control of working conditions, such as temperature, cleanliness, and power quality.[6]
The PLC provided several advantages over earlier automation systems. It was designed to tolerate the industrial environment better than systems intended for office use, and was more reliable, compact, and required less maintenance than relay systems. It was easily expandable with additional I/O modules. While relay systems required tedious and sometimes complicated hardware changes in case of reconfiguration, a PLC can be reconfigured by loading new or modified code. This allowed for easier iteration over manufacturing process design. With a simple programming language focused on logic and switching operations, it was more user-friendly than computers using general-purpose programming languages. Early PLCs were programmed in ladder logic, which strongly resembled a schematic diagram of relay logic. It also permitted its operation to be monitored.